Augmenting Decisions of Taxi Drivers through Reinforcement Learning for Improving Revenues

نویسندگان

  • Tanvi Verma
  • Pradeep Varakantham
  • Sarit Kraus
  • Hoong Chuin Lau
چکیده

Taxis (which include cars working with car aggregation systems such as Uber, Grab, Lyft etc.) have become a critical component in the urban transportation. While most research and applications in the context of taxis have focused on improving performance from a customer perspective, in this paper, we focus on improving performance from a taxi driver perspective. Higher revenues for taxi drivers can help bring more drivers into the system thereby improving availability for customers in dense urban cities. Typically, when there is no customer on board, taxi drivers will cruise around to find customers either directly (on the street) or indirectly (due to a request from a nearby customer on phone or on aggregation systems). For such cruising taxis, we develop a Reinforcement Learning (RL) based system to learn from real trajectory logs of drivers to advise them on the right locations to find customers which maximize their revenue. There are multiple translational challenges involved in building this RL system based on real data, such as annotating the activities (e.g., roaming, going to a taxi stand, etc.) observed in trajectory logs, identifying the right features for a state, action space and evaluating against real driver performance observed in the dataset. We also provide a dynamic abstraction mechanism to improve the basic learning mechanism. Finally, we provide a thorough evaluation on a real world data set from a developed Asian city and demonstrate that an RL based system can provide significant benefits to the drivers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy Controlled Non-Stationarity for Improving Performance of Independent Learners in Anonymous MARL Settings

With the advent of sequential matching (of supply and demand) systems (uber, Lyft, Grab for taxis; ubereats, deliveroo, etc for food; amazon prime, lazada etc. for groceries) across many online and offline services, individuals (taxi drivers, delivery boys, delivery van drivers, etc.) earn more by being at the ”right” place at the ”right” time. We focus on learning techniques for providing guid...

متن کامل

Optimal Pricing for Improving Efficiency of Taxi Systems

In Beijing, most taxi drivers intentionally avoid working during peak hours despite of the huge customer demand within these peak periods. This dilemma is mainly due to the fact that taxi drivers’ congestion costs are not reflected in the current taxi fare structure. To resolve this problem, we propose a new pricing scheme to provide taxi drivers with extra incentives to work during peak hours....

متن کامل

Improving Viability of Electric Taxis by Taxi Service Strategy Optimization: A Big Data Analysis of New York City

Electrification of transportation is critical for a lowcarbon society. In particular, public vehicles (e.g., taxis) provide a crucial opportunity for electrification. Despite the benefits of eco-friendliness and energy efficiency, adoption of electric taxis faces several obstacles, including constrained driving range, long recharging duration, limited charging stations and low gas price, all of...

متن کامل

Application of Reinforcement Learning Algorithms for Predicting Taxi-out Times

Accurate estimation of taxi-out time in the presence of uncertainties in the National Airspace System (NAS) is essential for the development of a more efficient air traffic management system. The dynamic nature of operations in the NAS indicates that traditional regression methods characterized by constant parameters would be inadequate to capture variations in taxi-out time across a day. In th...

متن کامل

The effect of navigational expertise on wayfinding in new environments

Becoming proficient at navigation in urban environments is something that we all aspire to. Here we asked whether being an expert at wayfinding in one environment has any effect on learning new spatial layouts. Licensed London taxi drivers are among the most proficient urban navigators, training for many years to find their way around a complex and irregularly-laid out city. We first tested how...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017